Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2401016, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696594

ABSTRACT

Despite attractive cost-effectiveness, scalability, and superior stability, carbon-based printable perovskite solar cells (CPSCs) still face moisture-induced degradation that limits their lifespan and commercial potential. Here, the moisture-preventing mechanisms of thin nanostructured super-repellent coating (advancing contact angle >167° and contact angle hysteresis 7°) integrated into CPSCs are investigated for different moisture forms (falling water droplets vs water vapor vs condensed water droplets). It is shown that unencapsulated super-repellent CPSCs have superior performance under continuous droplet impact for 12 h (rain falling experiments) compared to unencapsulated pristine (uncoated) CPSCs that degrade within seconds. Contrary to falling water droplets, where super-repellent coating serves as a shield, water vapor is found to physisorb through porous super-repellent coating (room temperature and relative humidity, RH 65% and 85%) that increase the CPSCs performance for 21% during ≈43 d similarly to pristine CPSCs. It is further shown that water condensation forms within or below the super-repellent coating (40 °C and RH 85%), followed by chemisorption and degradation of CPSCs. Because different forms of water have distinct effects on CPSC, it is suggested that future standard tests for repellent CPSCs should include rain falling and condensate formation tests. The findings will thus inspire the development of super-repellent coatings for moisture prevention.

2.
Proc Natl Acad Sci U S A ; 121(17): e2315214121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38621127

ABSTRACT

Superhydrophobic surfaces are often seen as frictionless materials, on which water is highly mobile. Understanding the nature of friction for such water-repellent systems is central to further minimize resistance to motion and energy loss in applications. For slowly moving drops, contact-line friction has been generally considered dominant on slippery superhydrophobic surfaces. Here, we show that this general rule applies only at very low speed. Using a micropipette force sensor in an oscillating mode, we measure the friction of water drops approaching or even equaling zero contact-line friction. We evidence that dissipation then mainly stems from the viscous shearing of the air film (plastron) trapped under the liquid. Because this force is velocity dependent, it can become a serious drag on surfaces that look highly slippery from quasi-static tests. The plastron thickness is found to be the key parameter that enables the control of this special friction, which is useful information for designing the next generation of ultraslippery water-repellent coatings.

3.
Nat Mater ; 22(12): 1548-1555, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37723337

ABSTRACT

Aerophilic surfaces immersed underwater trap films of air known as plastrons. Plastrons have typically been considered impractical for underwater engineering applications due to their metastable performance. Here, we describe aerophilic titanium alloy (Ti) surfaces with extended plastron lifetimes that are conserved for months underwater. Long-term stability is achieved by the formation of highly rough hierarchically structured surfaces via electrochemical anodization combined with a low-surface-energy coating produced by a fluorinated surfactant. Aerophilic Ti surfaces drastically reduce blood adhesion and, when submerged in water, prevent adhesion of bacteria and marine organisms such as barnacles and mussels. Overall, we demonstrate a general strategy to achieve the long-term stability of plastrons on aerophilic surfaces for previously unattainable underwater applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...